

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

2640

Mechanics 4

Friday

28 MAY 2004

Afternoon

1 hour 20 minutes

Additional materials: Answer booklet Graph paper List of Formulae (MF8)

TIME

1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- Where a numerical value for the acceleration due to gravity is needed, use 9.8 m s⁻².
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 60.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

	2	
1	Two flywheels P and Q are rotating, in opposite directions, about the same fixed axis. speed of P is 25 rad s ⁻¹ and the angular speed of Q is 30 rad s ⁻¹ . The flywheels lock togeth this they both rotate with angular speed 10 rad s^{-1} in the direction in which P was originate moment of inertia of P about the axis is 0.64 kg m^2 . Find the moment of inertia of axis.	ner, and after ally rotating.
2	A uniform rectangular lamina has mass m and sides of length $3a$ and $4a$, and rotates fr fixed horizontal axis. The axis is perpendicular to the lamina and passes through a corner makes small oscillations in its own plane, as a compound pendulum.	
	(i) Find the moment of inertia of the lamina about the axis.	[3]
	(ii) Find the approximate period of the small oscillations.	[3]
3	The region between the curve $y = x\sqrt{(3-x)}$ and the x-axis for $0 \le x \le 3$ is rotated throug about the x-axis to form a uniform solid of revolution. Find the x-coordinate of the centre this solid.	
4	A uniform solid sphere, of mass 14 kg and radius 0.25 m, is rotating about a fixed axi diameter of the sphere. A couple of constant moment 4.2 N m about the axis, acting in to frotation, is applied to the sphere.	
	(i) Find the angular acceleration of the sphere.	[3]
	During a time interval of 30 seconds the sphere rotates through 7500 radians.	
	(ii) Find the angular speed of the sphere at the start of the time interval.	[2]
	(iii) Find the angular speed of the sphere at the end of the time interval.	[2]
	(iv) Find the work done by the couple during the time interval.	[2]
5	Two aircraft A and B are flying horizontally at the same height. A has constant velocity the direction with bearing 025° , and B has constant velocity $185 \mathrm{ms^{-1}}$ in the direction value.	
	(i) Find the magnitude and direction of the velocity of A relative to B.	[5]

Initially A is 4500 m due west of B. For the instant during the subsequent motion when A and B are closest together, find

(ii) the distance between A and B, [3]

(iii) the bearing of A from B. [2]

A uniform rod AB, of mass m and length 2a, is free to rotate in a vertical plane about a fixed horizontal axis through A. A light elastic string has natural length a and modulus of elasticity mg; one end is attached to B and the other end is attached to a light ring B which can slide along a smooth vertical wire. The wire is in the same vertical plane as AB, and is at a distance a from A. The rod AB makes an angle θ with the upward vertical, where $0 < \theta < \frac{1}{2}\pi$ (see diagram).

- (i) Give a reason why the string RB is always horizontal. [1]
- (ii) By considering potential energy, find the value of θ for which the system is in equilibrium. [6]
- (iii) Determine whether this position of equilibrium is stable or unstable. [4]
- 7 A uniform rod AB has mass m and length 2a. The point P on the rod is such that $AP = \frac{2}{3}a$.
 - (i) Prove by integration that the moment of inertia of the rod about an axis through P perpendicular to AB is $\frac{4}{9}ma^2$. [4]

The axis through P is fixed and horizontal, and the rod can rotate without resistance in a vertical plane about this axis. The rod is released from rest in a horizontal position. Find, in terms of m and g,

- (ii) the force acting on the rod at P immediately after the release of the rod, [5]
- (iii) the force acting on the rod at P at an instant in the subsequent motion when B is vertically below P.

		3.64	Ixx
1	$0.64 \times 25 - I \times 30 = (0.64 + I) \times 10$	M1 A1A1	Use of angular momentum For LHS and RHS
	$I = 0.24 \text{ kg m}^2$	A1	Tot Life and Kris
	I = 0.24 kg m	4	
2 (i)	$I = \frac{4}{3}m(\frac{3}{2}a)^2 + \frac{4}{3}m(2a)^2$	B1	For either term
		M1	Use of perpendicular axes rule
	$=\frac{25}{3}ma^2$	A1 3	
			_ 1 2 2 2 .
	OR $I = \frac{1}{3}m\{(\frac{3}{2}a)^2 + (2a)^2\} + m(\frac{5}{2}a)^2$ B1		For $\frac{1}{3}m\{(\frac{3}{2}a)^2 + (2a)^2\}$
	M1		Use of parallel axes rule
	$=\frac{25}{3}ma^2$ A1		
(ii)	Γ		
	Period is $2\pi \sqrt{\frac{I}{mgh}}$	M1	or $(-)$ $mgh\sin\theta = I\ddot{\theta}$
	$\frac{25 \text{ ma}^2}{}$		
	$=2\pi\sqrt{\frac{\frac{25}{3}ma^2}{mg\frac{5}{2}a}}$	A1 ft	or $-mg(\frac{5}{2}a)\theta \approx \frac{25}{3}ma^2\ddot{\theta}$
	$=2\pi\sqrt{\frac{10a}{3g}}$	A1	
	γ 3g	3	
3	$\int \pi xy^2 dx = \int_0^3 \pi x^3 (3 - x) dx$	M1	(π may be omitted throughout)
	$= \pi \left[\frac{3}{4} x^4 - \frac{1}{5} x^5 \right]_0^3 (=12.15\pi)$	A1	
	$\int \pi y^2 dx = \int_0^3 \pi x^2 (3 - x) dx$	M1	
	$=\pi \left[x^3 - \frac{1}{4}x^4\right]_0^3 (=6.75\pi)$	A1	
	$\overline{x} = \frac{12.15\pi}{6.75\pi}$	M1	Dependent on previous M1M1
		A1	
	=1.8	6	
4 (i)	$I = \frac{2}{5} \times 14 \times 0.25^2$ (= 0.35)	B1	
	$4.2 = I\alpha$	M1	
	$\alpha = 12 \text{ rad s}^{-2}$	A1	
		3	
(ii)	$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$; $7500 = \omega_1 \times 30 + \frac{1}{2} \times 12 \times 30^2$	M1	
	$\omega_1 = 70 \text{ rad s}^{-1}$	A1 ft	Ft 250 – 15α
		2	
(iii)	$\omega_2 = \omega_1 + \alpha t \; ; \omega_2 = 70 + 12 \times 30$	M1	
	$\omega_2 = 430 \mathrm{rad} \mathrm{s}^{-1}$	A1 ft	Ft $250 + 15\alpha$
		2	
(iv)	Work done is $L\theta = 4.2 \times 7500$	M1	Or $\frac{1}{2}I(\omega_2^2-\omega_1^2)$
	= 31500 J	A1 2	

		1	
5 (i)	Va 185 50° 125° 240	В1	Velocity triangle If wrong triangle used, then B0 M1A0 M1A0 for equivalent work Full ft in (ii) and (iii)
	$v^2 = 240^2 + 185^2 - 2 \times 240 \times 185 \cos 75$	M1	
	$v = 262 \text{ m s}^{-1}$	A1	
	$\frac{\sin \phi}{185} = \frac{\sin 75}{262.4}$ $\phi = 42.9^{\circ}$	M1	
	Bearing is $25 + \phi = 067.9^{\circ}$	A1 5	Accept 68°, 67.8° Allow other clearly stated descriptions of direction
	OR $\mathbf{v} = \begin{pmatrix} 240\sin 25 \\ 240\cos 25 \end{pmatrix} - \begin{pmatrix} 185\sin 310 \\ 185\cos 310 \end{pmatrix}$ M1		
	$= \begin{pmatrix} 243 \\ 98.6 \end{pmatrix} $ A1		
	M1		Finding magnitude or angle
	$v = \sqrt{243^2 + 98.6^2} = 262$ A1		
	Bearing is $\tan^{-1} \frac{243}{98.6} = 67.9^{\circ}$ A1		
(ii)	As viewed from B 67.9° 4500 m B	M1	Relative displacement diagram
	$d = 4500\cos 67.9$	M1	Fr Complement in (1)
	=1690 m	A1 ft 3	Ft from bearing in (i)
	OR $\overrightarrow{BA} = \begin{pmatrix} 243t - 4500 \\ 98.6t \end{pmatrix}$ M1 $BA^2 = (243t - 4500)^2 + (98.6t)^2$ is minimum when $t = \frac{4500 \times 243}{243^2 + 98.6^2}$ (=15.9) M1		
	$243^{2} + 98.6^{2}$ Then $BA = 1690$ A1 ft		Ft from relative velocity in (i)
(iii)	Bearing is 270 + 67.9 = 338°	M1 A1 ft	Ft from bearing in (i) SR B1 ft for 158°
	OR $\overrightarrow{BA} = \begin{pmatrix} -636\\1570 \end{pmatrix}$ Regarding is $360 - \tan^{-1} 636$		
	Bearing is $360 - \tan^{-1} \frac{636}{1570}$ M1 = 338° A1 ft		Ft from relative velocity in (i)
	- 330 AT II		

(0)	P1 . 1. /	D1	P 49 4
6 (i)	e.g. R has no weight / mass There is no friction There is no vertical force at R String has minimum length / elastic energy	B1 1	For any one contributory reason
(ii)	$V = \frac{1}{2} \left(\frac{mg}{a} \right) (2a\sin\theta)^2 + mga\cos\theta$	B2	Give B1 for correct EE or PE
	$= mga(2\sin^2\theta + \cos\theta)$ $\frac{dV}{d\theta} = mga(4\sin\theta\cos\theta - \sin\theta)$ For equilibrium, $mga\sin\theta(4\cos\theta - 1) = 0$ $\theta = 1.32 (or 75.5^\circ)$	B1 ft B1 ft M1 A1	Diffn of $\sin^2 \theta$ (or $\cos^2 \theta$) Diffn of $\cos \theta$ (or $\sin \theta$) Allow $\cos^{-1} \frac{1}{4}$, 76° Ignore $\theta = 0$ if stated Marks can be awarded in (iii) if not earned in (ii) SR If done by taking moments, MIA1 for $\frac{mg(2a\sin \theta)}{a}(2a\cos \theta) = mg(a\sin \theta)$ A1 for $\theta = 1.32$ (Max 3 out of 6) These marks may only replace all other marks in (ii)
(iii)	$\frac{d^2V}{d\theta^2} = mga\cos\theta(4\cos\theta - 1) - 4mga\sin^2\theta$ When $\cos\theta = \frac{1}{4}$, $\frac{d^2V}{d\theta^2} = -4mga\sin^2\theta \ (= -\frac{15}{4}mga) < 0$ Equilibrium is unstable	B2 ft M1 A1 4	Give B1 if just one error Only B1 ft if work is simpler Fully correct working only
	OR When $\theta < 1.32$, $\frac{dV}{d\theta} > 0$ B1 ft When $\theta > 1.32$, $\frac{dV}{d\theta} < 0$ B1 ft V has a maximum M1		
	Equilibrium is unstable A1		Fully correct working, and convincing demonstration of signs above

7 (i)				
7 (1)	$I = \sum_{A} (\rho \delta x) x^2$		M1	
	$= \int_{-\frac{2}{3}a}^{\frac{4}{3}a} \frac{m}{2a} x^2 \mathrm{d}x$		A1	
	$= \left[\frac{mx^3}{6a}\right]_{-\frac{2}{3}a}^{\frac{4}{3}a} = \frac{32}{81}ma^2 + \frac{4}{81}ma^2$		M1	Dependent on previous M1
	$=\frac{4}{9}ma^2$		A1 (ag) 4	
	OR $I_G = \sum (\rho \delta x) x^2 = \int_{-a}^a \frac{m}{2a} x^2 dx$	M1A1		Or $2\int_0^a \frac{m}{2a} x^2 dx$
	$I = \frac{1}{6}ma^2 + \frac{1}{6}ma^2 + m(\frac{1}{3}a)^2$	M1		Dependent on previous M1
	$=\frac{4}{9}ma^2$	A1 (ag)		
(ii)	$mg(\frac{1}{3}a) = (\frac{4}{9}ma^2)\alpha$		M1	Use of $L = I\alpha$
	$\alpha = \frac{3g}{4a}$		A1	
	$mg - R = m(\frac{1}{3}a)\alpha$		M1	For force = $m(\frac{1}{3}a)\alpha$
	$mg - R = \frac{1}{4}mg$		A1 ft	
	$R = \frac{3}{4} mg \text{vertically upwards}$		A1 5	Direction must be indicated
(iii)	$\frac{1}{2}(\frac{4}{9}ma^2)\omega^2 = mg(\frac{1}{3}a)$		M1	Use of $\frac{1}{2}I\omega^2$
	$\omega^2 = \frac{3g}{2a}$		A1	
	$S - mg = m(\frac{1}{3}a)\omega^2$		M1	For force = $m(\frac{1}{3}a)\omega^2$
	$S - mg = \frac{1}{2} mg$		A1 ft	
	$S = \frac{3}{2} mg \text{vertically upwards}$		A1 5	Direction must be indicated
	Alternative for (ii) and (iii)			(θ measured from horizontal
	$\ddot{\theta} = \frac{3g\cos\theta}{4a}$	M1A1		X is radial component Y is transverse component)
	$\dot{\theta}^2 = \frac{3g\sin\theta}{2a}$	M1A1		
	$mg\cos\theta - Y = m(\frac{1}{3}a)\frac{3g\cos\theta}{4a}$	M1A1 ft		
	$Y = \frac{3}{4} mg \cos \theta$			
	$X - mg\sin\theta = m(\frac{1}{3}a)\frac{3g\sin\theta}{2a}$	M1A1 ft		
	$X = \frac{3}{2} mg \sin \theta$			
	When $\theta = 0$, $X = 0$, $Y = \frac{3}{4}mg$	A1		
	When $\theta = \frac{1}{2}\pi$, $X = \frac{3}{2}mg$, $Y = 0$	A1		